6-Hydroxydopamine lesions of the nigrostriatal pathway alter the expression of glutamate decarboxylase messenger RNA in rat globus pallidus projection neurons.
نویسندگان
چکیده
In situ hybridization was used to study the effect of 6-hydroxydopamine-induced damage to the midbrain dopaminergic neurons on the level of glutamate decarboxylase mRNA in globus pallidus neurons in the rat. Some animals received an injection of Fluoro-gold in the entopeduncular nucleus or the substantia nigra prior to the 6-hydroxydopamine lesion in order to identify glutamic acid decarboxylase mRNA levels in pallidal neurons that project to one of these targets. Analysis was carried out on a sample of all pallidal neurons as well as neurons that were identified as projection neurons in control and lesioned groups. The loss of the dopamine-containing neurons in the substantia nigra resulted in significant increases in the percentage of globus pallidus neurons that expressed glutamate decarboxylase mRNA and in the amount of glutamate decarboxylase mRNA per globus pallidus neuron. These increases were noted in a sample of all pallidal neurons, as well as pallidal neurons that were identified as projecting to either the entopeduncular nucleus or the substantia nigra. In control animals, glutamate decarboxylase mRNA was clearly identified in globus pallidus neurons projecting to the entopeduncular nucleus, indicating that this recently reported projection is at least partially GABAergic. The results of this study indicate that substantia nigra dopaminergic neurons regulate globus pallidus neurons in the rat, and that removal of the dopaminergic input to the corpus striatum results in a significant increase in the amount of glutamate decarboxylase mRNA in pallidal neurons. The decreased firing rate of pallidal neurons that is seen following the loss of dopamine input appears to be accompanied by an increase in the level of glutamate decarboxylase mRNA in these neurons.
منابع مشابه
Increased striatal glutamate decarboxylase after lesions of the nigrostriatal pathway.
The neurotransmltter 7-aminobutyric acid (GABA) is synthesized in brain by the enzyme glutamic acid decarboxylase (GAD). The basal ganglia, particularly the globus pallidus and substantia nigra (SN), have been shown to contain high levels of GAD activity1,4,26, aS, and the existence of a GABAergic pathway from the globus pallidus (GP) or caudal striatum to the SN is now well established. Thus, ...
متن کاملGlutamic acid decarboxylase 67 mRNA regulation in two globus pallidus neuron populations by dopamine and the subthalamic nucleus.
The globus pallidus (GP) consists of two neuron populations, distinguished according to their immunoreactivity for parvalbumin (PV). The PV-immunoreactive (PV+) neurons project preferentially to "downstream" targets such as the subthalamic and entopeduncular nuclei, whereas neurons lacking PV (PV- neurons) project preferentially to the striatum, suggesting a role for PV- cells in feedback to st...
متن کاملSubthalamic nucleus lesions: widespread effects on changes in gene expression induced by nigrostriatal dopamine depletion in rats.
Lesions of the subthalamic nucleus block behavioral effects of nigrostriatal dopamine depletion in rats and primates, but the contribution of this region to the molecular effects of dopaminergic lesions is unknown. The effects of subthalamic nucleus lesions alone or in combination with a 6-hydroxydopamine-induced lesion of the substantia nigra were examined in adult rats. Unilateral subthalamic...
متن کاملA study on striatal local electrical potential changes in an animal model of Parkinson's disease
Parkinson’s disease (PD) is a neurodegenerative disorder that does not develop spontaneously in some animal species. PD can be induced experimentally in some laboratory animals including mouse, rat and horse. Globus pallidus (GP) and substantia nigra pars compacta (SNc) are damaged in patients with PD. The hallmark of PD is a progressive impaired control of movement, an alteration of autonomic ...
متن کاملAtorvastatin protects GABAergic and dopaminergic neurons in the nigrostriatal system in an experimental rat model of transient focal cerebral ischemia.
INTRODUCTION Cerebral ischemia is the third leading cause of death and the primary cause of permanent disability worldwide. Atorvastatin is a promising drug with neuroprotective effects that may be useful for the treatment of stroke. However, the effects of atorvastatin on specific neuronal populations within the nigrostriatal system following cerebral ischemia are unknown. OBJECTIVE To evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience
دوره 51 3 شماره
صفحات -
تاریخ انتشار 1992